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When Is It Time to Worry About

Clustering?
A Poisson distribution tutorial for SH&E professionals
By Pat L. Clemens

www.asse.org MAY 2003   PROFESSIONAL SAFETY 29

CAN RANDOMNESS PRODUCE loss event “clus-
ters?” For example, suppose in a large workforce of
individuals performing nearly identical tasks under
identical circumstances, one or only a few workers
suffer an apparently inordinate number of injuries.
Or, suppose a small number of identical mechanical
systems in a large fleet appear to be responsible for
an excessive number of failures. Are clusters of such
events results of haphazard chance or something
more insidious? The Poisson distribution provides
an easy-to-use engineering tool for diagnosing these
cases. Results help pinpoint which instances can be
explained by randomness and which may deserve
engineering or management attention.

Background: A Perplexing Problem
Consider a nationwide baked goods company

that has a fleet of 82 identical dough-mixing
machines in widely scattered plants. The machines
are all the same age and their production rates are
well matched. They experience similar service stress-
es, rates of use and maintenance routines. Yet, over a
five-year period of service, during which 33 of the
machines have experienced no failures, four
machines have been responsible for nearly 20 percent
of 69 machine failures experienced by the fleet. Four
faulty machines or statistical mischance?

Next, consider an aircraft manufacturer with pro-
duction workers engaged in metal trimming opera-
tions. Of 72 workers performing similar work, one
has suffered nearly 12 percent of all hand cuts over an
extended observation period—despite the fact that all
have equal protection and have received the same
training. Carelessness or a probabilistic expectation?

The “clustering” of loss outcomes such as these is
vexing to the SH&E professional, whether it occurs in
occupational safety or in system safety practice. The
SH&E professional is often tasked with helping man-
agement decide whether to retrain or transfer the pos-
sibly careless worker, or to replace the suspect system.
These decisions are especially troubling because one
must find a reason for confidence that the clustering is

not simply an effect of statistical randomness but,
rather, is a consequence of a vulnerable system (in the
first example) or a heedless worker (in the second).

A Useful Diagnostic Aid
The Poisson exponential distribution is an easily

mastered analytical approach for use by the SH&E
professional seeking confidence that a cluster of loss
events is not simply a product of chance but may
have a more insidious underlying cause that de-
serves attention (Ash; Green; Kumamoto and Hen-
ley; Raheja; Roland and Moriarty). Poisson modeling
is widely employed as an analytical tool in reliability
engineering, is often found in quantitative system
safety analyses, and is frequently used in epidemio-
logical medical studies (Hanley and Lippman-
Hand), but it is rarely applied in occupational safety
practice—where its use can also be beneficial.

The Poisson distribution models the probabilities
that clusters of events will be experienced by individ-
ual items within a population. It assumes that event
occurrences are governed only by randomness. In this
context, events of concern are loss events. Such events
may be employee injuries or system failures, for exam-
ple. Experience-based field data containing apparent
clusters can be compared with results of the Poisson
analysis for insight into the likelihood that clusters of
actual loss events may have arisen by chance.

Figure 1 presents the equation for the Poisson dis-
tribution and defines key terms.
Here, “system” represents the
individual worker or piece of
equipment—anything to which
the analysis may be applied.
“Losses” refers to injuries or
system failures; it is their prob-
abilities of occurring in clusters
that is to be explored.

An Equipment Example
Let’s return to the example

of the 82 identical dough-mix-
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by actual experience of the fleet. Were the popula-
tion of machines larger or the period of observation
longer, an even closer match would be expected.

An Occupational Safety Example
Now, translate this example into the realm of

occupational safety and health. Replace the dough-
mixing machines with the 72 metal trimmers and
substitute their accumulated 51 workplace hand cut
injuries (which required either first aid or greater
care) for the machine failures. Table 3 presents the
injury distribution.

How might the worker who experienced those
six injuries in that period be viewed, when 34 others
performing the same work under the same circum-
stances had none? Is that worker careless, a victim of
randomness or should other factors be explored?

Again evaluating the m term of Figure 1:

m = 51 = 0.708 hand cuts
72 worker

Applying it in the Poisson expression (Figure 1) as
before, arbitrarily using an example cluster size of 3:

P(3) =
(0.708)3 x 2.718-0.708

6

P(3) = 2.92 x 10-2 per worker
Thus, any selected worker has a probability of a

just less than 0.03 (three percent) of suffering three
hand cuts over the study period. Because this popu-
lation includes 72 workers, randomness dictates that

ing machines that over a five-year period of exposure
experienced a total of 69 failures. Failures were
distributed among the machines (Table 1). In this
example, 33 machines experienced no
failures; 34 had one failure each; two
failures were suffered by each of 11
machines, etc. These numbers of failures
are the cluster sizes and become the n
terms to be used in successive solutions
of the Poisson expression in Figure 1.

To evaluate the m term of Figure 1,
one must recognize that 69 failures
occurred among the 82 machines over
the five-year period:

m = 69 = 0.841 failures
82 machine

The n! (n factorial) in the equation
signifies:

n! = 1 x 2 x 3 x . . . (n-1) x n
Thus, to explore the probability of a

cluster size of four (i.e., n = 4):
n! = 1 x 2 x 3 x 4 = 24

Using these values of m and n, one
can find P(n)—the probability that any
one machine among the 82 will suffer a cluster of
four failures during the five-year exposure interval:

P(n) =
(m)n�-m

n!

P(4) =
(0.841)4 x 2.718-0.841

24
P(4) = 0.00899 per system
Rounding this result, it is interpreted to mean that

any single machine selected randomly from the fleet
has a probability no greater than 0.009 (0.9 percent)
of failing four times in the five-year period. This
seems a rather low probability in view of the operat-
ing experience. However, the fleet has 82 independ-
ent machines, each with this same probability of
experiencing four failures. Thus, one must multiply
P(n) by that population to approximate the number
of machines expected to suffer four failures in the
fleet: 82 x 0.00899 = 0.737 � 0.74

Since failures occur only as whole numbers, this
result can reasonably be rounded to 1.0. In fact, as
Table 1 shows, one machine did experience four fail-
ures during the five-year period. Unfortunately, at the
outset of the five-year period, it would be impossible
to know which of the 82 machines would suffer those
four failures as all would have had equal likelihood.

The Poisson results for clusters of failures from
zero through four have been computed using this
approach (Table 2). As this shows—perhaps surpris-
ingly—the numbers of failures to be expected based
on the Poisson analysis are rather closely matched

The Mixing Machine
Failure Record
Machines Failures*

33 0
34 1
11 2
3 3
1 4

*Cluster size, n

Table 1Table 1

Expected vs. Actual 
Failure Distribution
Failure Expected Actual Machine
Count (n) P(n) Failures* Failure Experience†

0 0.431 35.4 33
1 0.363 29.7 34
2 0.153 12.5 11
3 0.043 3.51 3
4 0.009 0.74 1

P(n) = probability per machine of n failures
*82 x P(n) per machine
†Number of machines suffering n failures over five-year period (from Table 1)

Table 2Table 2

The Poisson Distribution

P(n) =
(m)n -m

n!

P(n) = probability, per system, of n losses
n = loss count examined; i.e., cluster size
� = Napierian base (2.718 . . .)
m = long-term average loss rate, per system

Figure 1Figure 1
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the fleet or work-
group—which is
the m term in the
Poisson expression.

Conclusion
Before denounc-

ing a piece of equip-
ment or a particular
worker for a rash of
loss events, the pru-
dent SH&E profes-
sional will confirm
that the events are
not readily explain-
able on the basis of
random misfortune.
Poisson distribution
provides an uncom-
plicated and readily
mastered method of
verifying the cluster-
ing role played by
chance—and may
cause the SH&E pro-
fessional to alter intuitive reactions to clusters.  �
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the number of them likely to suffer three
injuries over the period is approximately
72 x 0.0292 � 2.10

Table 4 shows expected versus actual injury dis-
tribution in this example. Results show that for the
most part the injury distribution actually experi-
enced reasonably matches that predicted. An obvi-
ous exception is the one worker who experienced six
hand cuts during the study period. Notice that the
probability of this occurring in the 72-worker group
is appreciably less than one percent.

Interpreting Results
Results of the analyses are of particular interest to

the SH&E professional. In the fleet of 82 dough-mix-
ing machines, randomness alone would lead to the
expectation that a single machine would suffer four
failures during the exposure interval. Similarly, it
should be an expectation that just four of the 82
machines might experience 13 of the 69 failures
experienced by the fleet. (One machine suffered four
failures and three suffered three failures each for the
total of 13.) The Poisson results assure the analyst
that machine-to-machine differences alone cannot be
held accountable for the evident clustering seen in
the failure record.

Without the analysis, however, one might be
tempted to condemn those four machines as failure-
prone devices and to replace them. Doing so without
making any other changes would give one no reason
to expect better fleet performance during the next
five-year exposure interval. During that next interval,
it would not be surprising for another machine some-
where in the fleet to suffer four failures, and another
group of three to experience three each, and so on.

In the case of the hand cut injury distribution
among the 72 metal trimmers, the analytical results
show that the apparent cluster of six injuries experi-
enced by a single worker far exceeds the probabilis-
tic expectation. Poisson modeling has provided
assurance that pure randomness cannot account for
this cluster. Other causes should be considered and
remedies sought. All other cases in the injury count
distribution fall at values that reasonably match
expectations.

The analyses have also shown that if a company
cannot tolerate having the loss event distributions
and clustering shown in these examples, it must find
ways to reduce the long-term average loss rate for
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Poisson Distribution
Assumptions
In applying the Poisson distribution model as a
means of exploring the likelihood that clusters of
loss events are attributable to randomness, one
must recognize the assumptions it imposes.

•It presumes that the items making up the
population analyzed are identical, whether they
are workers, subsystems, components, etc.

•It assumes that the items individually occupy
either one or the other of only two states—injured
or uninjured, functioning or faulty.

•A single, known event occurrence rate must
be presumed to apply to all items in the popula-
tion throughout the interval of exposure; in the
first example presented, a long-term average of
0.841 failures per machine was used, based on the
operating experience of the fleet of machines.

•The occurrence rate per item must be rela-
tively small over the interval of study (i.e., <1.0).
In the first example, it was 0.841.

The Hand Cut
Injury Record
Workers Injuries*
34 0
30 1
6 2
1 3
0 4
0 5
1 6

*Cluster size, n

Table 3Table 3

Expected vs. Actual 
Injury Distribution
Injury Expected Actual Worker
Count (n) P(n) Injuries* Injury Experience†

0 0.492 35.5 34
1 0.349 25.1 30
2 0.124 8.89 6
3 2.92 x 10-2 2.10 1
4 5.17 x 10-3 0.372 0
5 7.32 x 10-4 0.0527 0
6 8.64 x 10-5 6.22 x 10-3 1

P(n) = probability per worker of n injuries
*72 x P(n) per worker
†Number of workers suffering n injuries over observation period

Table 4Table 4
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