B eing asked to assess the risk of a favorite hobby can be a delight—particularly to an occupational safety researcher who finds joy in seeing the boundaries between work and leisure disappear. This is what happened to the author when the board of executive directors of the Montreal Live Steamers Corp. suggested a project inspired by “Health and Safety at Work Act: The Model Engineer’s Perspective,” an article in Model Engineer (Harrison, Clifton and Williams 744+). This article reviewed a complete risk assessment produced for a British club of live steamers.

For those unfamiliar with this hobby, it entails laying down model track (usually 3½”, 4¼” or 7¼” wide) and running miniature trains along it. The track of the author’s local club is about one kilometer long. What makes this activity particularly interesting is that most of the locomotives are steam-powered (hence the nickname “live steamer”) and trains can carry people (photo above).

Obviously, safety is a concern in this setting. Like most live steamer clubs, members love to share their hobby with...
What makes this activity particularly interesting is that most of the locomotives are steam-powered (hence the nickname “live steamer”) and trains can carry people. Thus, it is important to ensure that no mishaps occur and that no one is injured. Through the risk assessment project, the club set out to create—and sustain—an improved safety culture.

THE RISK ASSESSMENT PROJECT

A literature review was the first step. This encompassed club regulations, local laws and regulations and machine safety standards. In addition, a five-member safety committee was created; an engineering student also participated to provide an external perspective. To facilitate the project, risk assessment forms and an event report were created (Tables 1 and 2). Using these documents, the safety committee learned how to conduct a risk assessment and collect information.

Since most risk assessments begin with the identification of hazards, the safety committee observed the track site—both as a group and individually—at the beginning of the 1999 season. These observations were particularly intensive during the international meeting, held the first weekend in July, because this event draws many other hobbyists and members of the public.

The committee also reviewed all forms completed following any “abnormal event.” This systematic collection of data offered a snapshot of what really occurred on and around the tracks; these forms confirmed or completed the hazard identification process. Club members were very cooperative in this effort—reporting all abnormal events, whether the consequences seemed meaningful or not.

Based on findings of the hazard iden-

<table>
<thead>
<tr>
<th>Safety Committee</th>
<th>Montréal Live Steamers Corp.—Event Evaluation Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Hazard description: Train derailing</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Tracks</td>
</tr>
<tr>
<td>A.3</td>
<td>Tracks</td>
</tr>
<tr>
<td>A.4</td>
<td>Tracks</td>
</tr>
<tr>
<td>D Hazard description: Collision between a vehicle and a train running on track</td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>Entrance crossing</td>
</tr>
<tr>
<td>H Hazard description: Object able to hurt train passengers</td>
<td></td>
</tr>
<tr>
<td>H.2</td>
<td>Tracks</td>
</tr>
</tbody>
</table>
tification phase, the committee proceeded to identify causes, estimate the associated level of risk and define priorities for preventive action. The complete assessment was developed during several working meetings of the safety committee. The engineering student then prepared a list of all identified risks in any foreseeable situation (e.g., loading or unloading equipment, running in private or public operation, maintenance).

Nine main hazard domains were identified and analyzed:

1. train derailment;
2. collision between:
 - a car and a person;
 - two vehicles on the club site;
 - a vehicle and a running train;
 - a train and person (club member or visitor);
 - two trains;
3. objects able to injure train passengers or emergency unloading of cars;
4. burning by steam jet or wounds by missile parts from steam locomotive;
5. contact with burning coal or cinders from a steam locomotive;
6. hazards associated with propane firing;
7. hazards associated with fuel (motor-driven locomotives);
8. hazards associated with unloading/loading equipment, including back pain;
9. miscellaneous concerns:
 - respiratory problems for train passengers;
 - air compressor in the equipment service building;
 - electrical hazard during battery charging in service building;
 - injuries from unattended tools.

THE RISK ASSESSMENT TOOL

The risk assessment relied on definitions from standards related to “hazardous situation,” severity of consequences, frequency or duration of exposure to a hazard and ability to avoid the harm’s source. The
parameters (Figure 1): using a risk graph that mapped three key domains, a risk level was defined of implementation and current practice. For any detailed hazard within the nine domains, a risk level was defined using a risk graph that mapped three key parameters (Figure 1):
- severity of consequences (S1: slight injury or first help or S2: any other harm);
- frequency of exposure (F1: low frequency or exposure or F2: often);
- ability to avoid (P1: possible under certain conditions or P2: nearly impossible).

This simple method emulates those used in industry. Based on risk level, a priority level was established for corrective action, taking into consideration ease of implementation and current practice.

RISK ASSESSMENT RESULTS

Based on preliminary hazard identification, some immediate actions were taken. In addition, a full report that included both short- and long-term recommendations was prepared. For each hazard identified, the safety committee defined a prevention strategy or reviewed the club’s current preventive measures. Recommendations ranged from no change to equipment modification, and from additional construction to specific training (club members) and information designed to educate visitors. In many cases, the club’s current practices were recognized as appropriate, with associated risks being deemed “tolerable.”

Based on recommendations, more warning posters were displayed throughout the club site to better inform visitors about hazards related to the circulation of trains drawn by steam locomotives. In addition, access to some areas was restricted. Several regulations have been modified as well, and new ones (e.g., a new boiler test procedure) developed to address identified hazards.

Since the assessment was performed and preventive measures were implemented, the number of abnormal events has decreased. Despite these positive results, the safety committee continues to seek improvements. As in any plant or office setting, this will require the continued support and input of club members.

REFERENCES

Joseph-Jean Paques is a professional engineer who has worked since 1986 as a researcher in machine safety at the Occupational Health and Safety Research Institute in Montreal, Quebec. His research has examined machine safety in several industries, including sawmills, power cranes, pulp and paper, plastics and metals. Paques holds an M.S. in Automation from Montreal Polytechnic School.

Patrick Taillefer is studying industrial engineering at Ecole Polytechnique de Montreal.

READER FEEDBACK

Did you find this article interesting and useful? Circle the corresponding number on the reader service card.

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>SOMEWHAT</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>